Form atoms and molecules to new materials and devices

Development of the kinetic mechanisms for combustion, catalysis and environment: software tools from Kintech Lab

May 5, 2015

Overview

- 1. Stages of kinetic mechanism development for processes in reactive media
- 2. Collection and analysis of reference data
- **3. Demo**: database KintechDB, comparison of kinetic mechanisms species-by-specie, reaction-by-reaction
- 4. Computational models for verification of the mechanisms based on experimental data
- **5. Demo**: methane combustion mechanism
- 6. Analysis of the kinetic mechanisms: sensitivity analysis, reaction paths identification based on reduction techniques
- 7. **Demo**: reduction of kinetic mechanisms
- 8. Refinement of the thermodynamic properties of substances and reaction rate constants based on first-principles simulations
- **9. Demo**: calculation of reaction rate constant in Khimera

About Kintech Lab

Kintech Lab develops methods and special software tools for multilevel modeling in different engineering fields:

- ✓ KintechDB a network-based database for accumulation of Lab data on substances and processes. Applications: information support of kinetic modeling at all levels and stages
- ✓ Chemical Workbench an integrated environment for conceptual design of physico-chemical processes, development and reduction of chemical mechanisms. *Applications:* development of detailed chemical mechanisms of pyrolysis, combustion, chemical processes in plasma, processes on surfaces; and conceptual design of processes or devices.
- ✓ Khimera a unique tool for calculating microscopic parameters from firstprinciples calculations Applications: development of detailed kinetic
 mechanisms of combustion, plasmo-chemical processes, interaction of gas and
 surface.

Stages of mechanisms development

Kintech Lab products

Collection of reference data

Research Papers

- Combustion and Flame, Physica Chemistry Chemical Pjysics, Int. J. Chemical Kinetics, ...
- Reviews, collection of evaluated data: Baulch review, ...

Open databases in internet, commercial databases

NIST, Burkat Millenium database, NASA CEA, UBTAHTEPMO

Web-sites of research groups

- Combustion Chemistry at LLNL web site: combustion chemistry from C1 to C16, biofuel, pure and surrogate mixtures https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-mechanisms
- Combustion Chemistry Centre at NUI Galway: combustion chemistry from C1 to C5 http://c3.nuigalway.ie/mechanisms.html
- Chemical Reaction Engineering and Chemical Kinetics group at Politecnico di Milano: small and large hydrocarbons, bio-fuels, NOx and PAH http://creckmodeling.chem.polimi.it/index.php/kinetic-schemes
- Chemical reaction mechanisms for catalytic systems, developed at Karlsruhe Institute of Technology http://www.detchem.com/mechanisms.html
- Master Chemical Mechanism of tropospheric chemistry http://mcm.leeds.ac.uk/MCM/

Collection of reference data

- > 4500 thermodata of substances,
- > 800 molecular properties of substances,
- > 6000 elementary processes, rates, cross-sections,
- > 80 detailed kinetic mechanisms of combustion, chemically active and radiating plasma
- Tools for analysis, comparison and visualization
- Global search
- Extesion of the database by customer, e.g. CHEMKI files
- Export into CHEMKIN format
- Local and remote acces to database
- Tight integration with other software by Kintech Lab

Verification of kinetic mechanisms

Application

Source of data For mechanism testing

Models of experiments

Process	Experimental setup	Theoretical model
Self- ignition/unifor m flow	Shock tubeRapid compression machine	 Calorimetric (batch) reactor Plug flow reactor
Flame	Bunsen flameFlat flame burner	 Laminar flame in premixed media Diffusion counter-flow
Turbulent flame/stirred reactor	Jet stirred reactor	Perfectly stirred reactor

Verification of kinetic mechanisms

Models of kinetic experiments...

- Shock tube, Rapid compression machine (CBR),
- Flow reactor (PFR),
- Jet stirred reactor (WSR)

- Laminar flame in premixed media,
- Bunsen flame
- Counter flow flame

Non-equilibrium electric discharges

- Batch reactor with catalyst (kinetic limiting)
- Flow reactor with catalyst (kinetic limiting)
- Jet-stirred reactor with catalyst (kinetic limiting)

Verification of kinetic mechanisms

Analysis of kinetic models

...sensitivity...

<u>Calorimetric Reactor with Deviation (CRD)</u> – global sensitivity calculation CBR (4 models)

<u>Calorimetric Reactor with Sensitivity (CRS)</u> – local (differential) sensitivity calculation CBR (4 models)

...reduction

- Reaction paths diagrams
- Modern mechanism reduction techniques: DRG, DRGEP, PCA, CSP, и т.д.

Recovery of properties from data of first-principles simulations

Heavy particles

- Direct bimolecular reactions
- Bimolecular reactions through the long-living complexes
- Multi-channel reactions
- Dissociation of di-atomic molecules
- Ion-molecular reactions
- Surface diffusion and reactions

Electron-molecular reactions

- Excitations
- Ionization
- Attachment

V-V' energy transfer

Photo-chemical reactions

- Photo-dissociation
- quenching
- isomerisation

RRCM

Surface diffusion

Thermodynamic and transport properties of multicomponent gases and plasma

Contacts

Request a demo: evaluation@kintechlab.com

Ask technical questions: support@kintechlab.com

Sales: sales@kintechlab.com

Webinar - feedback: webinars@kintechlab.com

Our web-site: www.kintechlab.com

