Kintech Lab - Intagrated Tools for Inventive Solutions

Thermodynamic Properties of Species Calculation with Khimera

Thermodynamic properties of individual substances are required for any analysis of multielemental multiphase physico-chemical systems. As a rule most of them are retrieved from existing databases. In some cases the data for a substances you need are not available or out-of-date in these databases and should be calculated. 

Types of species for which the calculation of thermodynamic properties can be done by Khimera
Calculation of thermodynamic properties with Khimera. Statistical mechanics approach is used to calculate partition functions over electronic, vibrational and rotational energy levels for mono, di, and polyatomic gases. The calculations for condensed phases are based on low temperature thermodynamic functions (at some selected temperatures, standard entropy and enthalpy at room temperature) and equations for heat capacity temperature dependence, temperatures and enthalpies of phase transitions.

Statistical mechanics approach is used to calculate partition functions over electronic, vibrational and rotational energy levels for mono, di, and polyatomic gases. The calculations for condensed phases are based on low temperature thermodynamic functions (at some selected temperatures, standard entropy and enthalpy at room temperature) and equations for heat capacity temperature dependence, temperatures and enthalpies of phase transitions.


Example: intermediate data preparation for the ground electronic state of AlH

The realization of direct summation technique requires constructing full set of vibrational-rotational levels for all electronic states taking into account for partition functions calculations. Experimental data as a rule refer to low-lying vibrational and rotational levels. Dissociation energy value and constructing Limiting Curve of Dissociation (LCD) allows extrapolate experimental data to describe all bound and quasibound states.

The result of calculations of the rotational levels for selected vibrational quantum number is presented in the picture. It should be noted that only four vibrational levels of the ground state of AlH molecule are investigated in spectroscopic studies.

Full set of vibrational and rotational levels is constructed for the ground electronic state of AlH molecule
Full set of vibrational and rotational levels is constructed for the ground electronic state of AlH molecule.

Example: general case of internal rotation in polyatomic molecules

The usual approximation with one term potential:

V(f)=V0/2[1+cos(nf)]

is not applicable for the general case of internal rotation (IR) with complicated potential. The case of torsional potential for relatively simple methyl n-propyl ether is shown on the picture. The potential was obtained from quantum chemical calculation and is fully unsymmetrical. The most general form of periodic function containing cosine and sine terms should approximate it. The results are presented in the picture. The direct summation over calculated torsional levels using such potential give reliable result of IR contribution calculation into thermal functions.

 

Potential function of internal rotation and torsional energy levels for methyl n-propyl ether
Potential function of internal rotation and torsional energy levels for methyl n-propyl ether (CH3 – O – CH2CH2CH3).

Example: thermodynamic properties and geometry of FeF3

As a result of thermal functions calculation and selection of enthalpy of formation the full thermodynamic properties table can be calculated. The table consists of thermal functions in a wide temperature range, equilibrium constant for a given reaction (for example, dissociation), basic thermochemical quantities (the enthalpy of formation at 0 K and room temperature, the enthalpy of a given reaction), and equations approximating reduced Gibbs energy function in the same temperature range. It should be noted that the approximation is carried out by several conjugated piecewise functions. The heat capacity values in the points of conjugation and its first temperature derivatives are equal for conjugated functions.

Thermodynamic properties table for FeF3(g)

-----------------------------------P=1 atm---------------------------------

                          IRON TRIFLUORIDE   FeF3(g)                        

-------------------------------------------------------------------------------

FeF3=Fe+3F                     ΔкH(0)= 1383.438 kJ/mol   
-------------------------------------------------------------------------------   
T(K)     :     Cp     :      Φ        :       S      :  H(T)-H(0)  :     lgK
                (J/(K.mol)                        kJ/mol
-------------------------------------------------------------------------------     
100          49.414    208.324    247.919        3.959     -708.7343      
200          59.630    238.319    285.548        9.446     -345.9280      
298.15     67.274    258.226    310.864       15.694    -226.2024      
300          67.393    258.552    311.280       15.819    -224.6962     
5700        83.075    465.758    546.243     458.765         6.3363     
5800        83.077    467.158    547.688     467.072         6.5638     
5900        83.080    468.536    549.109     475.381         6.7840     
6000        83.082    469.890    550.505     483.689         6.9970  

--------------------------------------------------------------------------------                                 

M = 112.84220
ΔfH(0) = -739.957     kJ/mol
ΔfH(298.15) = -742.006     kJ/mol
Snucl   =   20.256     J/(K.mol)
---------------------------------------------------------------------------  

T=  298- 1500K,   X=T/10000 :                                                

Φ   = 4.688608E+02 + 6.786536E+01*ln(X) - 3.604143E-03*X + 8.173496E-01*X+ 1.590141E+02*X - 4.055775E+02*X + 5.362902E+02*X  J/(K.mol)        

---------------------------------------------------------------------------  

T= 1500- 6000K,   X=T/10000  :                                             

Φ   = 5.097200E+02 + 8.307927E+01*ln(X) - 1.070131E-02*X + 1.542127E+00*X+1.627659E-01*X - 1.008190E-01*X + 3.264821E-02*X  J/(K.mol)        

---------------------------------------------------------------------------